1 上電復(fù)位時序
在單片機及其應(yīng)用電路每次上電的過程中,由于電源同路中通常存在一些容量大小不等的濾波電容,使得單片機芯片在其電源引腳VCC和VSS之間所感受到的電源電壓值VDD,是從低到高逐漸上升的。該過程所持續(xù)的時間一般為1~100ms(記作tsddrise)。上電延時taddrise的定義是電源電壓從lO%VDD上升到90%VDD所需的時間,如圖1所示。

從理論上講,單片機每次上電復(fù)位所需的最短延時應(yīng)該不小于treset。這里,treset等于上電延時taddrise與起振延時tOSC之和,如圖1所示。從實際上講,延遲一個treset往往還不夠,不能夠保障單片機有--一個良好的工作開端。
在單片機每次初始加電時,首先投入工作的功能部件是復(fù)位電路。復(fù)位電路把單片機鎖定在復(fù)位狀態(tài)上并且維持一個延時(記作TRST),以便給予電源電壓從上升到穩(wěn)定的一個等待時間;在電源電壓穩(wěn)定之后,再插入一個延時,給予時鐘振蕩器從起振到穩(wěn)定的一個等待時間;在單片機開始進入運行狀態(tài)之前,還要至少推遲2個機器周期的延時,如圖2所示。

上述一系列的延時,都是利用在單片機RST引腳上外接一個RC支路的充電時間而形成的。典型復(fù)位電路如圖3(a)所示,其中的阻容值是原始手冊中提供的。在經(jīng)歷了一系列延時之后,單片機才開始按照時鐘源的工作頻率,進入到正常的程序運行狀態(tài)。從圖2所示的實測曲線中可以同時看到4條曲線:VDD、Vrst、XTAL2和ALE。在電源電壓以及振蕩器輸出信號穩(wěn)定之后,又等待了一段較長的延時才釋放RST信號,使得CPU脫離復(fù)位鎖定狀態(tài);而RST信號一旦被釋放,立刻在ALE引腳上就可檢測到持續(xù)的脈沖信號。

標(biāo)準(zhǔn)80C5l不僅復(fù)位源比較單一,而且還沒有設(shè)計內(nèi)部上電復(fù)位的延時功能,因此必須借助于外接阻容支路來增加延時環(huán)節(jié),如圖3(a)所示。其實,外接電阻R還是可以省略的,理由是一些CMOS單片機芯片內(nèi)部存在一個現(xiàn)成的下拉電阻Rrst。例如,AT89系列的Rrst阻值約為50~200kΩ;P89V51Rx2系列的Rrst阻值約為40~225 kΩ,如圖4所示。因此,在圖3(a)基礎(chǔ)上,上電復(fù)位延時電路還可以精簡為圖3(b)所示的簡化電路(其中電容C的容量也相應(yīng)減小了)。
在每次單片機斷電之后,須使延時電容C上的電荷立刻放掉,以便為隨后可能在很短的時間內(nèi)再次加電作好準(zhǔn)備。否則,在斷電后C還沒有充分放電的情況下,如果很快又加電,那么RC支路就失去了它應(yīng)有的延遲功能。因此,在圖3(a)的基礎(chǔ)上添加一個放電二極管D,上電復(fù)位延時電路就變成了如圖3(c)所示的改進電路。也就是說,只有RC支路的充電過程對電路是有用的,放電過程不僅無用,而且會帶來潛在的危害。于是附加一個放電二極管D來大力縮短放電持續(xù)時間,以便消除隱患。二極管D只有在單片機斷電的瞬間(即VCC趨近于0V,可以看作VCC對地短路)正向?qū)ǎ綍r一直處于反偏截止?fàn)顟B(tài)。

假如上電復(fù)位延遲時間不夠或者根本沒有延時過程,則單片機可能面臨以下2種危險,從而導(dǎo)致CPU開始執(zhí)行程序時沒有一個良好的初始化,甚至陷入錯亂狀態(tài)。
、僭跁r鐘振蕩器輸出的時鐘脈沖還沒有穩(wěn)定,甚至還沒有起振之前,就因釋放RST信號的鎖定狀態(tài)而放縱CPU開始執(zhí)行程序。這將會導(dǎo)致程序計數(shù)器PC中首次抓取的地址碼很可能是0000H之外的隨機值,進而引導(dǎo)CPU陷入混亂狀態(tài)。參考圖5所示的實測信號曲線。






